Cardinal interpolation with differences of tempered functions
نویسندگان
چکیده
منابع مشابه
Robust Cardinal Interpolation
A new method for modeling functions that intersect given points is developed and demonstrated. This method yields a generally non-Gaussian probability density of y given x that has properties which are often desired in practice. It is shown that this density can have a smoother mean function and a variance which is never larger than that of a classic Gaussian process density.
متن کاملFast Cardinal Interpolation
A computationally fast and optimally smooth method for generating a probability density of y given x that models given data points is described and illustrated. This method interpolates in that the mean function intersects the points and the variance function is zero at the points. It is fast and optimal in that it is produced by the smallest number of maximally-smooth Gaussian radial interpola...
متن کاملCardinal interpolation with polysplines on annuli
Cardinal polysplines of order p on annuli are functions in C2p−2 (Rn \ {0}) which are piecewise polyharmonic of order p such that ∆p−1S may have discontinuities on spheres in Rn, centered at the origin and having radii of the form ej , j ∈ Z. The main result is an interpolation theorem for cardinal polysplines where the data are given by sufficiently smooth functions on the spheres of radius ej...
متن کاملCardinal Hermite Spline Interpolation with Shifted Nodes
Generalized cardinal Hermite spline interpolation is considered. A special case of this problem is the classical cardinal Hermite spline interpolation with shifted nodes. By means of a corresponding symbol new representations of the cardinal Hermite fundamental splines can be given. Furthermore, a new efficient algorithm for the computation of the cardinal Hermite spline interpolant is obtained...
متن کاملA Faber Series Approach to Cardinal Interpolation
For a compactly supported function <p in Rd we study quasiinterpolants based on point evaluations at the integer lattice. We restrict ourselves to the case where the coefficient sequence Xf, for given data /, is computed by applying a univariate polynomial q to the sequence <p\Zd , and then convolving with the data f\Z(¡ . Such operators appear in the well-known Neumann series formulation of qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1992
ISSN: 0898-1221
DOI: 10.1016/0898-1221(92)90170-m